Second Semestral Examination
B. Math. (Hons.) IInd year
Rings and Modules
Instructor - B. Sury
April 26, 2023

Answer any SEVEN questions INCLUDING question 9; in each Question, only the first option attempted will be marked. Be BRIEF!

Q 1. If R is a commutative ring such that $R[X]$ is Noetherian, prove that R must have a unity.

OR

Let R be any ring with unity. In the ring $S=M_{2}(R)$, prove that all twosided ideals are of the form $M_{2}(I)$ for some two-sided ideal I of R.

Q 2. Let $\theta: \mathbf{C}[X, Y] \rightarrow \mathbf{C}[T]$ be the ring homomorphism given by $X \mapsto$ $T^{2}, Y \mapsto T^{3}$. Prove that Ker $\theta=\left(X^{3}-Y^{2}\right)$.

OR

Prove that $\mathbb{Z}[\sqrt{-d}]$ is not a UFD if $d>2$.
Q 3. Determine all $c \in \mathbb{Z}_{3}$ such that $\mathbb{Z}_{3}[X] /\left(X^{3}+X^{2}+c X+1\right)$ is a field.
OR

Let A be a commutative ring with unity, I be an ideal and P_{1}, \cdots, P_{m} be prime ideals such that $I \subseteq P_{1} \cup P_{2} \cup \cdots \cup P_{m}$. Then show that $I \subseteq P_{i}$ for some i.

Q 4. Let A be a commutative ring with unity. Prove that the nil radical of $A[X]$ coincides with the Jacobson radical.

OR

Show that for a commutative ring A with unity, if $\operatorname{Spec}(A)$ is not connected, then $A \cong A_{1} \times A_{2}$ where the rings A_{1}, A_{2} are both non-zero.

Q 5. For the ring $R=C[0,1]$ of continuous real functions on $[0,1]$, prove: (i) the only idempotents are the constant functions 0 and 1 ; (ii) R is not Noetherian.

OR

Let $N>1$ be a positive integer. Show that if $f=\sum_{i=0}^{m} a_{i} X^{i}, g=\sum_{j=0}^{n} b_{j} X^{j} \in$ $(\mathbb{Z} / N \mathbb{Z})[X]$ are such that $f g=0$, then $a_{i} b_{j}=0$ for all i, j.

Q 6. If A is a PID and M is a finitely generated A-module, prove that $M / \operatorname{Tor}(M)$ is a free module.

OR

Let A be a commutative ring with unity. If I is a finitely generated ideal such that $I=I^{2}$, show that there is an ideal J such that $A=I \oplus J$.

Q 7. Let A be a commutative ring with unity. and M be a finitely generated A-module. If $\theta: M \rightarrow M$ is an onto A-module homomorphism, prove that θ is $1-1$ as well.

OR

If A is a commutative ring and M is a finitely presented A-module, show that for any short exact sequence of A-modules:

$$
0 \rightarrow K \rightarrow A^{n} \rightarrow M \rightarrow 0
$$

the module K must be finitely generated.
Q 8. If A is an integral domain, and I, J are ideals such that $I J$ is a principal ideal, prove that I, J are finitely generated. Is there a counter-example when A is commutative but not an integral domain?

OR

If $A \in M_{2}(\mathbb{Z})$, consider the group homomorphism $T_{A}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ given by $v \mapsto A v$. If $\operatorname{det}(A) \neq 0$, find the order and exponent of the group $\mathbb{Z}^{2} / \operatorname{Image}\left(T_{A}\right)$ explicitly in terms of the entries of A.

Q 9. For the matrices $A=\left(\begin{array}{ccc}2 & 0 & 0 \\ 1 & 5 & 2 \\ -2 & -6 & -2\end{array}\right)$ and $B=\left(\begin{array}{ccc}3 & 2 & 1 \\ 0 & 3 & 1 \\ -1 & -4 & -1\end{array}\right)$, find the characteristic polynomials and the Jordan forms.

OR

Find all possible Jordan forms of a matrix whose characteristic polynomial is $(X+2)^{2}(X-5)^{3}$.

OR

Define the rational canonical form of a matrix and, prove that any matrix $A \in M_{n}(K)$ is conjugate to its transpose, where K is a field.

